Aggiunta progetti

This commit is contained in:
alessanacunaguardia
2025-10-16 19:43:34 +02:00
parent 8685944658
commit 998acbbf0c
18 changed files with 99 additions and 159 deletions

View File

@@ -3,9 +3,9 @@
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Alessandro Acuna Structural Engineer</title>
<title>Alessandro Acuna - Structural Engineer</title>
<meta name="description" content="Portfolio & CV of Alessandro Acuna, Structural Engineer specialized in composites, CAD, and FEA." />
<meta property="og:title" content="Alessandro Acuna Structural Engineer" />
<meta property="og:title" content="Alessandro Acuna - Structural Engineer" />
<meta property="og:description" content="Portfolio & CV of Alessandro Acuna, Structural Engineer specialized in composites, CAD, and FEA." />
<meta property="og:type" content="website" />
<meta name="theme-color" content="#0b0c10" />
@@ -431,17 +431,17 @@
</div>
<div class="card project" data-modal="tmpl-composite-hashin">
<h3 data-i18n="projects.card.hashin.title">Composite laminate Hashin (Abaqus)</h3>
<h3 data-i18n="projects.card.hashin.title">Composite laminate - Hashin (Abaqus)</h3>
<p data-i18n="projects.card.hashin.teaser">UD laminate under tension vs compression; ply-by-ply failure using Hashin initiation; FEM-driven analysis. <span class="where">UPM · JanMar 2025</span></p>
</div>
<div class="card project" data-modal="tmpl-section19">
<h3 data-i18n="projects.card.sec19.title">Rear Fuselage Section 19 (Skin & Stringers)</h3>
<h3 data-i18n="projects.card.sec19.title">Rear Fuselage - Section 19 (Skin & Stringers)</h3>
<p data-i18n="projects.card.sec19.teaser">Skin laminate & stringer concept, drop-offs, reinforcements, frame joints (clips, Ø4.8 mm). <span class="where">UPM · JanMar 2024</span></p>
</div>
<div class="card project" data-modal="tmpl-handlebar-support">
<h3 data-i18n="projects.card.handlebar.title">Motorbike rear subframe AlSi10Mg (SLM)</h3>
<h3 data-i18n="projects.card.handlebar.title">Motorbike rear subframe - AlSi10Mg (SLM)</h3>
<p data-i18n="projects.card.handlebar.teaser">Topology optimization, VDI 2230 bolted joints, static/fatigue validation (Ansys), weight minimization. <span class="where">Unibo · SepDec 2024</span></p>
</div>
@@ -456,7 +456,7 @@
<!-- Stiffened Panels -->
<template id="tmpl-stiffened-panels">
<h4 data-i18n="proj.stiff.h4">Composite stiffened panels</h4>
<p data-i18n-html="proj.stiff.obj"><strong>Objective </strong> Design and validate CFRP panels with stringers, minimizing weight while meeting buckling and damage-tolerance requirements under the defined load cases.</p>
<p data-i18n-html="proj.stiff.obj"><strong>Objective -</strong> Design and validate CFRP panels with stringers, minimizing weight while meeting buckling and damage-tolerance requirements under the defined load cases.</p>
<div>
<a class="btn primary" href="res/projects/stiffened-panels/report.pdf" target="_blank" rel="noopener" data-i18n="proj.common.download">📄 Download report</a>
@@ -467,31 +467,16 @@
<li data-i18n="proj.stiff.li1">Defined <strong>layups</strong> for skin and stringers (symmetry, balance, ply percentages).</li>
<li data-i18n="proj.stiff.li2"><strong>Pre-sized</strong> reinforcements and verified <strong>local/global buckling</strong> and <strong>stringer crippling</strong>.</li>
<li data-i18n="proj.stiff.li3">Checked <strong>deflections</strong> and <strong>margins of safety (MS)</strong> vs requirements.</li>
<li data-i18n="proj.stiff.li4">Performed <strong>thickness optimization</strong> (weight vs stiffness/stability) with FEM feedback.</li>
<li data-i18n="proj.stiff.li5">Used <strong>buckling mode shapes</strong> to guide redesign iterations.</li>
</ul>
<h5 data-i18n="proj.common.tools">Tools</h5>
<p data-i18n="proj.stiff.tools">Abaqus / Ansys for FEM; engineering spreadsheets for trade-offs; aerospace laminate rules.</p>
<p data-i18n="proj.stiff.tools">; Hand Calculation; engineering spreadsheets for trade-offs; aerospace laminate rules.</p>
<h5 data-i18n="proj.common.results">Results</h5>
<ul>
<li data-i18n="proj.stiff.r1">Weight reduction: <strong>≈ XY%</strong> (replace with your actual value).</li>
<li data-i18n="proj.stiff.r2"><strong>MS ≥ 0</strong> for buckling and crippling on critical load cases.</li>
<li data-i18n="proj.stiff.r3"><strong>Deflections ≤</strong> specified limit.</li>
</ul>
<div class="modal-gallery">
<figure>
<img src="res/projects/stiffened-panels/panel_overview.jpg" alt="Panel and stringers overview" loading="lazy">
<figcaption data-i18n="proj.stiff.cap1">Panel &amp; stringers overview</figcaption>
</figure>
<figure>
<img src="res/projects/stiffened-panels/buckling_modes.png" alt="Buckling modes 13 from FEM" loading="lazy">
<figcaption data-i18n="proj.stiff.cap2">Buckling modes 13 (FEM)</figcaption>
</figure>
<figure>
<img src="res/projects/stiffened-panels/layup_table.png" alt="Layup and thickness table" loading="lazy">
<figcaption data-i18n="proj.stiff.cap3">Layup &amp; thickness table</figcaption>
</figure>
</div>
<hr style="border:none;border-top:1px solid var(--border);margin:8px 0 4px">
<ul class="chips" aria-label="Highlights">
<li class="chip" data-i18n="proj.stiff.ch1">Buckling &amp; Crippling</li>
@@ -503,8 +488,8 @@
<!-- Hashin (Abaqus) -->
<template id="tmpl-composite-hashin">
<h4 data-i18n="proj.hashin.h4">Composite laminate Hashin (Abaqus)</h4>
<p data-i18n-html="proj.hashin.obj"><strong>Objective </strong> Simulate a UD laminate under tension and compression using <em>Hashin damage initiation</em> to identify ply-by-ply failure and compare tensile vs compressive capacity.</p>
<h4 data-i18n="proj.hashin.h4">Composite laminate - Hashin (Abaqus)</h4>
<p data-i18n-html="proj.hashin.obj"><strong>Objective -</strong> Simulate a UD laminate under tension and compression using <em>Hashin damage initiation</em> to identify ply-by-ply failure and compare tensile vs compressive capacity.</p>
<div>
<a class="btn primary" href="res/projects/hashin/report.pdf" target="_blank" rel="noopener" data-i18n="proj.common.download">📄 Download report</a>
@@ -530,7 +515,7 @@
</figure>
<figure>
<img src="res/projects/hashin/damage_evolution.png" alt="Hashin indices showing first-ply failure" loading="lazy">
<figcaption data-i18n="proj.hashin.cap2">Hashin maps first-ply failure</figcaption>
<figcaption data-i18n="proj.hashin.cap2">Hashin maps - first-ply failure</figcaption>
</figure>
<figure>
<img src="res/projects/hashin/tension_stress_strain.png" alt="Tension stressstrain curve with stage markers" loading="lazy">
@@ -553,8 +538,8 @@
<!-- Section 19 -->
<template id="tmpl-section19">
<h4 data-i18n="proj.sec19.h4">Rear Fuselage Section 19 (Skin &amp; Stringers)</h4>
<p data-i18n-html="proj.sec19.obj"><strong>Objective </strong> Define composite skin and stringer concept, reinforcements, drop-offs, and frame joints (clips, Ø4.8 mm) for a fuselage bay between Frames AB.</p>
<h4 data-i18n="proj.sec19.h4">Rear Fuselage - Section 19 (Skin &amp; Stringers)</h4>
<p data-i18n-html="proj.sec19.obj"><strong>Objective -</strong> Define composite skin and stringer concept, reinforcements, drop-offs, and frame joints (clips, Ø4.8 mm) for a fuselage bay between Frames AB.</p>
<div>
<a class="btn primary" href="res/projects/section19/report.pdf" target="_blank" rel="noopener" data-i18n="proj.common.download">📄 Download report</a>
@@ -576,9 +561,10 @@
<li data-i18n="proj.sec19.li4">Defined clip joints and prepared drawings, materials list, and panel weight.</li>
</ul>
<div class="modal-gallery">
<img src="res/projects/section19/catia_iso.png" alt="Master geometry: frames and stringers on fuselage surface" loading="lazy">
<img src="res/projects/section19/assembly.png" alt="Master geometry: frames and stringers on fuselage surface" loading="lazy">
<img src="res/projects/section19/laminate_map.png" alt="Skin laminate map with drop-offs and reinforcement" loading="lazy">
<img src="res/projects/section19/stringer_section.png" alt="Stringer web/flange section and clip joint to frame" loading="lazy">
<img src="res/projects/section19/drawing_stringer.png" alt="Drawing of the Stringer" loading="lazy">
<img src="res/projects/section19/drawing_clip.png" alt="Drawing of the Clip" loading="lazy">
</div>
<hr style="border:none;border-top:1px solid var(--border);margin:8px 0 4px">
<ul class="chips" aria-label="Highlights">
@@ -591,8 +577,8 @@
<!-- Handlebar / Rear Subframe -->
<template id="tmpl-handlebar-support">
<h4 data-i18n="proj.handle.h4">Motorbike Rear Subframe AlSi10Mg (SLM)</h4>
<p data-i18n-html="proj.handle.obj"><strong>Objective </strong> Design the lightest possible rear saddle frame within the boundary envelope, load-case compliant (static + fatigue), manufacturable by SLM (AlSi10Mg).</p>
<h4 data-i18n="proj.handle.h4">Motorbike Rear Subframe - AlSi10Mg (SLM)</h4>
<p data-i18n-html="proj.handle.obj"><strong>Objective -</strong> Design the lightest possible rear saddle frame within the boundary envelope, load-case compliant (static + fatigue), manufacturable by SLM (AlSi10Mg).</p>
<div>
<a class="btn primary" href="res/projects/handlebar/report.pdf" target="_blank" rel="noopener" data-i18n="proj.common.download">📄 Download report</a>
@@ -619,7 +605,7 @@
</div>
<hr style="border:none;border-top:1px solid var(--border);margin:8px 0 4px">
<ul class="chips" aria-label="Highlights">
<li class="chip" data-i18n="proj.handle.ch1">AlSi10Mg SLM</li>
<li class="chip" data-i18n="proj.handle.ch1">AlSi10Mg - SLM</li>
<li class="chip" data-i18n="proj.handle.ch2">Topology-Optimized</li>
<li class="chip" data-i18n="proj.handle.ch3">VDI 2230 bolts</li>
<li class="chip" data-i18n="proj.handle.ch4">SF&gt;2 / SF&gt;1</li>
@@ -630,7 +616,7 @@
<!-- Drone Structure -->
<template id="tmpl-drone-structure">
<h4 data-i18n="proj.drone.h4">Composite drone structure</h4>
<p data-i18n-html="proj.drone.obj"><strong>Objective </strong> Define laminate schedule and thicknesses to minimize weight while maintaining stiffness and strength on a composite drone frame, with harmonic and impact checks on critical members.</p>
<p data-i18n-html="proj.drone.obj"><strong>Objective -</strong> Define laminate schedule and thicknesses to minimize weight while maintaining stiffness and strength on a composite drone frame, with harmonic and impact checks on critical members.</p>
<div>
<a class="btn primary" href="res/projects/drone/report.pdf" target="_blank" rel="noopener" data-i18n="proj.common.download">📄 Download report</a>
@@ -650,8 +636,8 @@
<li data-i18n="proj.drone.r3">Local reinforcements added only where needed after impact assessment.</li>
</ul>
<div class="modal-gallery">
<img src="res/projects/drone/frame_layup.jpg" alt="Layup definition and thickness map on drone frame" loading="lazy">
<img src="res/projects/drone/harmonic.png" alt="Harmonic response mode proximity to rotor frequencies" loading="lazy">
<img src="res/projects/drone/finalthickness.png" alt="Thickness map on drone frame" loading="lazy">
<img src="res/projects/drone/harmonic_response.png" alt="Harmonic response - mode proximity to rotor frequencies" loading="lazy">
<img src="res/projects/drone/impact_results.png" alt="Impact FEM results on arm-hub joint" loading="lazy">
</div>
<hr style="border:none;border-top:1px solid var(--border);margin:8px 0 4px">
@@ -676,7 +662,7 @@
<a class="brand-link" href="https://www.upm.es" target="_blank" rel="noopener">Master in Composite Materials</a>
<span class="where">AIRBUS Programme, Universidad Politécnica de Madrid</span>
</h3>
<p>Courses: Design & Analysis of Advanced Composite Structures · Abaqus Lab · Space Structures.</p>
<p>Courses: Design of Advanced Composite Structures · Analysis of Composite Strucures · Abaqus Lab · Space Structures.</p>
</div>
</div>
<div class="card item">
@@ -688,7 +674,7 @@
<a class="brand-link" href="https://www.unibo.it" target="_blank" rel="noopener">MSc in Mechanical Engineering (Minor: Mechanical Design & Modelling)</a>
<span class="where">University of Bologna</span>
</h3>
<p>Courses: Chassis & Body · Surface CAD · Structural CAD · Product Development Processes & Methods.</p>
<p>Courses: Chassis & Body Design Manufacturing · CAD of Surfaces Lab · CAD of Mechanical Structures · Processes and Manufacturing Methods for Product Development.</p>
</div>
</div>
<div class="card item">
@@ -740,10 +726,10 @@
<div class="card" style="margin-top:12px">
<h3 data-i18n="skills.langs">Languages</h3>
<div class="lang-grid">
<div data-i18n="lang.it">Italian Native</div>
<div data-i18n="lang.es">Spanish Fluent (C2)</div>
<div data-i18n="lang.en">English Fluent (C1)</div>
<div data-i18n="lang.de">German Basic (A1)</div>
<div data-i18n="lang.it">Italian - Native</div>
<div data-i18n="lang.es">Spanish - Fluent (C2)</div>
<div data-i18n="lang.en">English - Fluent (C1)</div>
<div data-i18n="lang.de">German - Basic (A1)</div>
</div>
</div>
</section>
@@ -945,11 +931,11 @@
'projects.card.stiff.title':'Pannelli compositi irrigiditi',
'projects.card.stiff.teaser':'Verifiche di buckling e damage tolerance, ottimizzazione layup (skin & stringers), verifica deflessioni. <span class="where">UPM · FebMag 2025</span>',
'projects.card.hashin.title':'Laminato composito Hashin (Abaqus)',
'projects.card.hashin.title':'Laminato composito - Hashin (Abaqus)',
'projects.card.hashin.teaser':'Provino UD a trazione vs. compressione; failure ply-by-ply con Hashin; analisi FEM. <span class="where">UPM · GenMar 2025</span>',
'projects.card.sec19.title':'Sezione 19 fusoliera posteriore (Skin & Stringers)',
'projects.card.sec19.title':'Sezione 19 - fusoliera posteriore (Skin & Stringers)',
'projects.card.sec19.teaser':'Skin laminate & concept stringers, drop-off, rinforzi, giunti a frame (clip, Ø4.8 mm). <span class="where">UPM · GenMar 2024</span>',
'projects.card.handlebar.title':'Subframe posteriore moto AlSi10Mg (SLM)',
'projects.card.handlebar.title':'Subframe posteriore moto - AlSi10Mg (SLM)',
'projects.card.handlebar.teaser':'Topology optimization, bulloneria VDI 2230, validazione static/fatica (Ansys), minimizzazione peso. <span class="where">Unibo · SetDic 2024</span>',
'projects.card.drone.title':'Struttura drone in composito',
'projects.card.drone.teaser':'Definizione lamina, ottimizzazione spessori, analisi armoniche & impatto. <span class="where">Unibo · FebGiu 2023</span>',
@@ -961,10 +947,10 @@
'skills.adapt':'Adaptability',
'skills.creative':'Creative Problem Solving',
'skills.langs':'Lingue',
'lang.it':'Italiano Madrelingua',
'lang.es':'Spagnolo Fluente (C2)',
'lang.en':'Inglese Fluente (C1)',
'lang.de':'Tedesco Base (A1)',
'lang.it':'Italiano - Madrelingua',
'lang.es':'Spagnolo - Fluente (C2)',
'lang.en':'Inglese - Fluente (C1)',
'lang.de':'Tedesco - Base (A1)',
'contact.cta':'Interessa collaborare o vuoi il CV in un formato diverso? Scrivimi.',
'contact.locationTitle':'Località attuale:',
@@ -1008,7 +994,7 @@
'exp.cpc.where':'Modena, IT',
'exp.cpc.p1':'Laminazione di stampi <strong>CFRP</strong> e di un telaio per il team Formula SAE.',
/* PROGETTI common */
/* PROGETTI - common */
'proj.common.what':'Cosa ho fatto',
'proj.common.model':'Modello',
'proj.common.tools':'Strumenti',
@@ -1016,15 +1002,15 @@
'proj.common.process':'Processo',
'proj.common.download':'📄 Scarica report',
/* === PROGETTI dettagli (IT) === */
/* === PROGETTI - dettagli (IT) === */
'proj.stiff.h4':'Pannelli compositi irrigiditi',
'proj.stiff.obj':'<strong>Obiettivo </strong> Progettare e validare pannelli CFRP irrigiditi minimizzando il peso e rispettando i requisiti di buckling e damage tolerance.',
'proj.stiff.obj':'<strong>Obiettivo -</strong> Progettare e validare pannelli CFRP irrigiditi minimizzando il peso e rispettando i requisiti di buckling e damage tolerance.',
'proj.stiff.li1':'Definizione dei <strong>layup</strong> per skin e stringers (simmetria, bilanciamento, percentuali).',
'proj.stiff.li2':'<strong>Predimensionamento</strong> dei rinforzi e verifica di <strong>buckling</strong> locale/globale e <strong>crippling</strong> stringer.',
'proj.stiff.li3':'Verifica <strong>deflessioni</strong> e <strong>MS</strong> vs requisiti.',
'proj.stiff.li4':'<strong>Ottimizzazione spessori</strong> con feedback FEM.',
'proj.stiff.li5':'Uso delle <strong>forme modali</strong> di buckling per guidare il redesign.',
'proj.stiff.tools':'Abaqus / Ansys; fogli ingegneristici; regole aerospaziali di laminazione.',
'proj.stiff.tools':'Calcoli a mano; fogli ingegneristici; regole aerospaziali di laminazione.',
'proj.stiff.r1':'Riduzione di peso: <strong>≈ XY%</strong>.',
'proj.stiff.r2':'<strong>MS ≥ 0</strong> per buckling/crippling nei casi critici.',
'proj.stiff.r3':'<strong>Deflessioni ≤</strong> limite.',
@@ -1036,8 +1022,8 @@
'proj.stiff.ch3':'FEM-Driven',
'proj.stiff.ch4':'MS ≥ 0',
'proj.hashin.h4':'Laminato composito Hashin (Abaqus)',
'proj.hashin.obj':'<strong>Obiettivo </strong> Simulare un laminato UD a trazione e compressione con <em>inizio danno Hashin</em> per identificare il first-ply failure e confrontare la capacità a trazione/pressione.',
'proj.hashin.h4':'Laminato composito - Hashin (Abaqus)',
'proj.hashin.obj':'<strong>Obiettivo -</strong> Simulare un laminato UD a trazione e compressione con <em>inizio danno Hashin</em> per identificare il first-ply failure e confrontare la capacità a trazione/pressione.',
'proj.hashin.m1':'Provino: <strong>100 × 20 mm</strong>, <strong>10 lamine × 0.25 mm = 2.5 mm</strong>; layup simmetrico <strong>[0°, ±45°, 0°, 90°]s</strong>.',
'proj.hashin.m2':'Elementi: <strong>S4R</strong> (≈2 mm); materiale: lamina UD con elastico + Hashin.',
'proj.hashin.m3':'Vincoli/Carico: bordo inferiore vincolato; bordo superiore accoppiato a RP con spostamento prescr. in Y.',
@@ -1046,7 +1032,7 @@
'proj.hashin.r2':'<strong>Compressione:</strong> ±45° matrix-compression → 90° matrix-compression → 0° fiber-compression; <strong>UCS ≈ 336 MPa</strong>.',
'proj.hashin.r3':'<strong>Rapporto:</strong> UTS/UCS ≈ <strong>1.23</strong>.',
'proj.hashin.cap1':'Mesh & layup (S4R)',
'proj.hashin.cap2':'Mappe Hashin first-ply',
'proj.hashin.cap2':'Mappe Hashin - first-ply',
'proj.hashin.cap3':'σ–ε trazione (drop di rigidezza)',
'proj.hashin.cap4':'σ–ε compressione (drop di rigidezza)',
'proj.hashin.ch1':'Hashin initiation',
@@ -1055,8 +1041,8 @@
'proj.hashin.ch4':'UCS 336 MPa',
'proj.hashin.ch5':'Rapporto ≈ 1.23',
'proj.sec19.h4':'Sezione 19 fusoliera (Skin & Stringers)',
'proj.sec19.obj':'<strong>Obiettivo </strong> Definire skin e stringers in composito, rinforzi, drop-off e giunti ai frame (clip, Ø4.8 mm) per un pannello tra i frame AB.',
'proj.sec19.h4':'Sezione 19 - fusoliera (Skin & Stringers)',
'proj.sec19.obj':'<strong>Obiettivo -</strong> Definire skin e stringers in composito, rinforzi, drop-off e giunti ai frame (clip, Ø4.8 mm) per un pannello tra i frame AB.',
'proj.sec19.given':'Dati di base',
'proj.sec19.g1':'<strong>Geometria:</strong> cilindro <strong>R = 4500 mm</strong>; frame distanti <strong>550 mm</strong>; pitch stringer <strong>150 mm</strong>.',
'proj.sec19.g2':'<strong>Materiale:</strong> UD, <strong>CPT 0.184 mm</strong>.',
@@ -1072,8 +1058,8 @@
'proj.sec19.ch3':'UD CPT 0.184 mm',
'proj.sec19.ch4':'Clip Ø 4.8 mm',
'proj.handle.h4':'Subframe posteriore moto AlSi10Mg (SLM)',
'proj.handle.obj':'<strong>Obiettivo </strong> Progettare il telaio sellino più leggero entro gli ingombri, conforme ai carichi (statico + fatica), producibile in SLM (AlSi10Mg).',
'proj.handle.h4':'Subframe posteriore moto - AlSi10Mg (SLM)',
'proj.handle.obj':'<strong>Obiettivo -</strong> Progettare il telaio sellino più leggero entro gli ingombri, conforme ai carichi (statico + fatica), producibile in SLM (AlSi10Mg).',
'proj.handle.p1':'<strong>AM:</strong> AlSi10Mg; stampante SLM <em>NXG XII 600</em> (590 × 560 × 367 mm).',
'proj.handle.p2':'<strong>Topologia:</strong> stress-based (~2.8 kg) → <strong>compliance-based</strong> (~2.06 kg).',
'proj.handle.p3':'<strong>Bulloni (VDI 2230):</strong> Subframe M8×4; sella M5×4; preload + check da reazioni FEM.',
@@ -1081,14 +1067,14 @@
'proj.handle.r1':'<strong>Fattori di sicurezza:</strong> &gt; 2 statico, &gt; 1 fatica.',
'proj.handle.r2':'<strong>Deflessione:</strong> &lt; 2 mm.',
'proj.handle.r3':'<strong>Peso finale:</strong> ~<strong>656 g</strong>.',
'proj.handle.ch1':'AlSi10Mg SLM',
'proj.handle.ch1':'AlSi10Mg - SLM',
'proj.handle.ch2':'Topology-Optimized',
'proj.handle.ch3':'VDI 2230',
'proj.handle.ch4':'SF&gt;2 / SF&gt;1',
'proj.handle.ch5':'~656 g',
'proj.drone.h4':'Struttura drone in composito',
'proj.drone.obj':'<strong>Obiettivo </strong> Definire layup e spessori per minimizzare il peso mantenendo rigidezza/resistenza; verifiche armoniche e impatto.',
'proj.drone.obj':'<strong>Obiettivo -</strong> Definire layup e spessori per minimizzare il peso mantenendo rigidezza/resistenza; verifiche armoniche e impatto.',
'proj.drone.li1':'Selezione famiglie di laminati per bracci e piastra.',
'proj.drone.li2':'<strong>Ottimizzazione spessori</strong> su inviluppo carichi di volo.',
'proj.drone.li3':'FEM con <strong>risposta armonica</strong> lontano da frequenze rotori.',
@@ -1137,11 +1123,11 @@
'projects.card.stiff.title':'Composite stiffened panels',
'projects.card.stiff.teaser':'Buckling & damage tolerance checks, layup optimization (skin & stringers), deflection verification. <span class="where">UPM · FebMay 2025</span>',
'projects.card.hashin.title':'Composite laminate Hashin (Abaqus)',
'projects.card.hashin.title':'Composite laminate - Hashin (Abaqus)',
'projects.card.hashin.teaser':'UD laminate under tension vs compression; ply-by-ply failure using Hashin initiation; FEM-driven analysis. <span class="where">UPM · JanMar 2025</span>',
'projects.card.sec19.title':'Rear Fuselage Section 19 (Skin & Stringers)',
'projects.card.sec19.title':'Rear Fuselage - Section 19 (Skin & Stringers)',
'projects.card.sec19.teaser':'Skin laminate & stringer concept, drop-offs, reinforcements, frame joints (clips, Ø4.8 mm). <span class="where">UPM · JanMar 2024</span>',
'projects.card.handlebar.title':'Motorbike rear subframe AlSi10Mg (SLM)',
'projects.card.handlebar.title':'Motorbike rear subframe - AlSi10Mg (SLM)',
'projects.card.handlebar.teaser':'Topology optimization, VDI 2230 bolted joints, static/fatigue validation (Ansys), weight minimization. <span class="where">Unibo · SepDec 2024</span>',
'projects.card.drone.title':'Composite drone structure',
'projects.card.drone.teaser':'Lamination definition, thickness optimization, harmonic & impact FEM analyses. <span class="where">Unibo · FebJun 2023</span>',
@@ -1153,10 +1139,10 @@
'skills.adapt':'Adaptability',
'skills.creative':'Creative Problem Solving',
'skills.langs':'Languages',
'lang.it':'Italian Native',
'lang.es':'Spanish Fluent (C2)',
'lang.en':'English Fluent (C1)',
'lang.de':'German Basic (A1)',
'lang.it':'Italian - Native',
'lang.es':'Spanish - Fluent (C2)',
'lang.en':'English - Fluent (C1)',
'lang.de':'German - Basic (A1)',
'contact.cta':'Interested in collaborating or need the CV in a different format? Get in touch.',
'contact.locationTitle':'Current location:',
@@ -1209,13 +1195,13 @@
'proj.common.download':'📄 Download report',
'proj.stiff.h4':'Composite stiffened panels',
'proj.stiff.obj':'<strong>Objective </strong> Design and validate CFRP panels with stringers, minimizing weight while meeting buckling and damage-tolerance requirements under the defined load cases.',
'proj.stiff.obj':'<strong>Objective -</strong> Design and validate CFRP panels with stringers, minimizing weight while meeting buckling and damage-tolerance requirements under the defined load cases.',
'proj.stiff.li1':'Defined <strong>layups</strong> for skin and stringers (symmetry, balance, ply percentages).',
'proj.stiff.li2':'<strong>Pre-sized</strong> reinforcements and verified <strong>local/global buckling</strong> and <strong>stringer crippling</strong>.',
'proj.stiff.li3':'Checked <strong>deflections</strong> and <strong>margins of safety (MS)</strong> vs requirements.',
'proj.stiff.li4':'Performed <strong>thickness optimization</strong> (weight vs stiffness/stability) with FEM feedback.',
'proj.stiff.li5':'Used <strong>buckling mode shapes</strong> to guide redesign iterations.',
'proj.stiff.tools':'Abaqus / Ansys for FEM; engineering spreadsheets for trade-offs; aerospace laminate rules.',
'proj.stiff.tools':'Hand Calculation; engineering spreadsheets for trade-offs; aerospace laminate rules.',
'proj.stiff.r1':'Weight reduction: <strong>≈ XY%</strong> (replace with your actual value).',
'proj.stiff.r2':'<strong>MS ≥ 0</strong> for buckling and crippling on critical load cases.',
'proj.stiff.r3':'<strong>Deflections ≤</strong> specified limit.',
@@ -1227,8 +1213,8 @@
'proj.stiff.ch3':'FEM-Driven',
'proj.stiff.ch4':'MS ≥ 0',
'proj.hashin.h4':'Composite laminate Hashin (Abaqus)',
'proj.hashin.obj':'<strong>Objective </strong> Simulate a UD laminate under tension and compression using <em>Hashin damage initiation</em> to identify ply-by-ply failure and compare tensile vs compressive capacity.',
'proj.hashin.h4':'Composite laminate - Hashin (Abaqus)',
'proj.hashin.obj':'<strong>Objective -</strong> Simulate a UD laminate under tension and compression using <em>Hashin damage initiation</em> to identify ply-by-ply failure and compare tensile vs compressive capacity.',
'proj.hashin.m1':'Coupon: <strong>100 × 20 mm</strong>, <strong>10 plies × 0.25 mm = 2.5 mm</strong>; symmetric layup <strong>[0°, ±45°, 0°, 90°]s</strong>.',
'proj.hashin.m2':'Elements: <strong>S4R</strong> shell mesh (~2 mm); material: UD lamina with elastic + Hashin inputs.',
'proj.hashin.m3':'BC/Load: bottom clamped; top edge coupled to a Reference Point with prescribed Y-displacement.',
@@ -1237,7 +1223,7 @@
'proj.hashin.r2':'<strong>Compression:</strong> ±45° matrix-compression → 90° matrix-compression → 0° fiber-compression; <strong>UCS ≈ 336 MPa</strong>.',
'proj.hashin.r3':'<strong>Strength ratio:</strong> UTS/UCS ≈ <strong>1.23</strong> (≈23% stronger in tension).',
'proj.hashin.cap1':'Mesh & layup (S4R shells)',
'proj.hashin.cap2':'Hashin maps first-ply failure',
'proj.hashin.cap2':'Hashin maps - first-ply failure',
'proj.hashin.cap3':'Tension σ–ε (staged stiffness drops)',
'proj.hashin.cap4':'Compression σ–ε (staged stiffness drops)',
'proj.hashin.ch1':'Hashin initiation',
@@ -1246,8 +1232,8 @@
'proj.hashin.ch4':'UCS 336 MPa',
'proj.hashin.ch5':'Ratio ≈ 1.23',
'proj.sec19.h4':'Rear Fuselage Section 19 (Skin & Stringers)',
'proj.sec19.obj':'<strong>Objective </strong> Define composite skin and stringer concept, reinforcements, drop-offs, and frame joints (clips, Ø4.8 mm) for a fuselage bay between Frames AB.',
'proj.sec19.h4':'Rear Fuselage - Section 19 (Skin & Stringers)',
'proj.sec19.obj':'<strong>Objective -</strong> Define composite skin and stringer concept, reinforcements, drop-offs, and frame joints (clips, Ø4.8 mm) for a fuselage bay between Frames AB.',
'proj.sec19.given':'Given data',
'proj.sec19.g1':'<strong>Geometry:</strong> cylinder <strong>R = 4500 mm</strong>; frames <strong>550 mm</strong> apart; stringer pitch <strong>150 mm</strong>.',
'proj.sec19.g2':'<strong>Material:</strong> UD, <strong>CPT 0.184 mm</strong>.',
@@ -1263,8 +1249,8 @@
'proj.sec19.ch3':'UD CPT 0.184 mm',
'proj.sec19.ch4':'Clips Ø 4.8 mm',
'proj.handle.h4':'Motorbike Rear Subframe AlSi10Mg (SLM)',
'proj.handle.obj':'<strong>Objective </strong> Design the lightest possible rear saddle frame within the boundary envelope, load-case compliant (static + fatigue), manufacturable by SLM (AlSi10Mg).',
'proj.handle.h4':'Motorbike Rear Subframe - AlSi10Mg (SLM)',
'proj.handle.obj':'<strong>Objective -</strong> Design the lightest possible rear saddle frame within the boundary envelope, load-case compliant (static + fatigue), manufacturable by SLM (AlSi10Mg).',
'proj.handle.p1':'<strong>AM setup:</strong> AlSi10Mg; printer SLM <em>NXG XII 600</em> (590 × 560 × 367 mm).',
'proj.handle.p2':'<strong>Topology:</strong> stress-based trial (~2.8 kg) → <strong>compliance-based</strong> (~2.06 kg) with rebuilds.',
'proj.handle.p3':'<strong>Bolts (VDI 2230):</strong> Subframe M8×4; saddle M5×4; preload & checks via hand calcs + MATLAB from FEA reactions.',
@@ -1272,14 +1258,14 @@
'proj.handle.r1':'<strong>Safety factors:</strong> &gt; 2 static, &gt; 1 fatigue (Goodman).',
'proj.handle.r2':'<strong>Deflection:</strong> &lt; 2 mm under defined loads.',
'proj.handle.r3':'<strong>Final weight:</strong> ~<strong>656 g</strong> after combined-load map optimization.',
'proj.handle.ch1':'AlSi10Mg SLM',
'proj.handle.ch1':'AlSi10Mg - SLM',
'proj.handle.ch2':'Topology-Optimized',
'proj.handle.ch3':'VDI 2230 bolts',
'proj.handle.ch4':'SF&gt;2 / SF&gt;1',
'proj.handle.ch5':'~656 g',
'proj.drone.h4':'Composite drone structure',
'proj.drone.obj':'<strong>Objective </strong> Define laminate schedule and thicknesses to minimize weight while maintaining stiffness and strength on a composite drone frame, with harmonic and impact checks on critical members.',
'proj.drone.obj':'<strong>Objective -</strong> Define laminate schedule and thicknesses to minimize weight while maintaining stiffness and strength on a composite drone frame, with harmonic and impact checks on critical members.',
'proj.drone.li1':'Selected laminate families for arms and central plate (ply angles, stacking rules, symmetry/balance).',
'proj.drone.li2':'Ran <strong>thickness optimization</strong> under flight-load envelopes (hover, maneuver, landing).',
'proj.drone.li3':'Built FEM and extracted <strong>harmonic response</strong> to avoid resonance near rotor frequencies.',
@@ -1328,11 +1314,11 @@
'projects.card.stiff.title':'Versteifte Verbundpaneele',
'projects.card.stiff.teaser':'Beul- & Schadens­toleranzprüfungen, Layup-Optimierung (Skin & Stringer), Durchbiegungsprüfung. <span class="where">UPM · FebMai 2025</span>',
'projects.card.hashin.title':'Verbundlaminat Hashin (Abaqus)',
'projects.card.hashin.title':'Verbundlaminat - Hashin (Abaqus)',
'projects.card.hashin.teaser':'UD-Laminat Zug vs. Druck; ply-by-ply Versagen mit Hashin; FEM-gestützte Analyse. <span class="where">UPM · JanMär 2025</span>',
'projects.card.sec19.title':'Heckrumpf Sektion 19 (Skin & Stringers)',
'projects.card.sec19.title':'Heckrumpf - Sektion 19 (Skin & Stringers)',
'projects.card.sec19.teaser':'Skin-Laminat & Stringer-Konzept, Drop-offs, Verstärkungen, Rahmenverbindungen (Clips, Ø4,8 mm). <span class="where">UPM · JanMär 2024</span>',
'projects.card.handlebar.title':'Motorrad-Heckrahmen AlSi10Mg (SLM)',
'projects.card.handlebar.title':'Motorrad-Heckrahmen - AlSi10Mg (SLM)',
'projects.card.handlebar.teaser':'Topologie­optimierung, VDI 2230 Schrauben, statische/Ermüdungs­prüfung (Ansys), Gewichts­minimierung. <span class="where">Unibo · SepDez 2024</span>',
'projects.card.drone.title':'Verbund-Drone-Struktur',
'projects.card.drone.teaser':'Laminatdefinition, Dickenoptimierung, harmonische & Schlag-FEM. <span class="where">Unibo · FebJun 2023</span>',
@@ -1344,10 +1330,10 @@
'skills.adapt':'Anpassungsfähigkeit',
'skills.creative':'Kreatives Problemlösen',
'skills.langs':'Sprachen',
'lang.it':'Italienisch Muttersprache',
'lang.es':'Spanisch Fließend (C2)',
'lang.en':'Englisch Fließend (C1)',
'lang.de':'Deutsch Grundkenntnisse (A1)',
'lang.it':'Italienisch - Muttersprache',
'lang.es':'Spanisch - Fließend (C2)',
'lang.en':'Englisch - Fließend (C1)',
'lang.de':'Deutsch - Grundkenntnisse (A1)',
'contact.cta':'Interesse an einer Zusammenarbeit oder CV in anderem Format? Kontaktieren Sie mich.',
'contact.locationTitle':'Aktueller Standort:',
@@ -1390,7 +1376,7 @@
'exp.cpc.where':'Modena, IT',
'exp.cpc.p1':'Laminieren von <strong>CFRP</strong>-Formen und eines Chassis für das Formula-SAE-Team.',
/* PROJEKTE gemeinsam */
/* PROJEKTE - gemeinsam */
'proj.common.what':'Was ich gemacht habe',
'proj.common.model':'Modell',
'proj.common.tools':'Werkzeuge',
@@ -1398,15 +1384,15 @@
'proj.common.process':'Prozess',
'proj.common.download':'📄 Bericht herunterladen',
/* === PROJEKTE Details (DE) === */
/* === PROJEKTE - Details (DE) === */
'proj.stiff.h4':'Versteifte Verbundpaneele',
'proj.stiff.obj':'<strong>Ziel </strong> CFRP-Paneele mit Stringern auslegen und validieren, Gewicht minimieren und Beul-/Schadens­toleranz-Anforderungen erfüllen.',
'proj.stiff.obj':'<strong>Ziel -</strong> CFRP-Paneele mit Stringern auslegen und validieren, Gewicht minimieren und Beul-/Schadens­toleranz-Anforderungen erfüllen.',
'proj.stiff.li1':'<strong>Layups</strong> für Skin und Stringer definiert (Symmetrie, Balance, Lagenanteile).',
'proj.stiff.li2':'Verstärkungen <strong>vordimensioniert</strong> und <strong>lokales/globales Beulen</strong> sowie <strong>Stringer-Crippling</strong> geprüft.',
'proj.stiff.li3':'<strong>Durchbiegungen</strong> und <strong>Safety Margins (MS)</strong> gegen Anforderungen überprüft.',
'proj.stiff.li4':'<strong>Dickenoptimierung</strong> (Gewicht vs. Steifigkeit/Stabilität) mit FEM-Feedback.',
'proj.stiff.li5':'<strong>Beulmoden</strong> genutzt, um Redesign-Iterationen zu steuern.',
'proj.stiff.tools':'Abaqus / Ansys für FEM; Ingenieur-Spreadsheets; Luftfahrt-Laminatregeln.',
'proj.stiff.tools':'Berechnungen von Hand; Ingenieur-Spreadsheets; Luftfahrt-Laminatregeln.',
'proj.stiff.r1':'Gewichtsreduktion: <strong>≈ XY %</strong>.',
'proj.stiff.r2':'<strong>MS ≥ 0</strong> für Beulen und Crippling in kritischen Lastfällen.',
'proj.stiff.r3':'<strong>Durchbiegungen ≤</strong> Grenzwert.',
@@ -1418,8 +1404,8 @@
'proj.stiff.ch3':'FEM-getrieben',
'proj.stiff.ch4':'MS ≥ 0',
'proj.hashin.h4':'Verbundlaminat Hashin (Abaqus)',
'proj.hashin.obj':'<strong>Ziel </strong> UD-Laminat unter Zug und Druck mit <em>Hashin-Schadenseinleitung</em> simulieren, ply-by-ply-Versagen identifizieren und Zug- vs. Drucktragfähigkeit vergleichen.',
'proj.hashin.h4':'Verbundlaminat - Hashin (Abaqus)',
'proj.hashin.obj':'<strong>Ziel -</strong> UD-Laminat unter Zug und Druck mit <em>Hashin-Schadenseinleitung</em> simulieren, ply-by-ply-Versagen identifizieren und Zug- vs. Drucktragfähigkeit vergleichen.',
'proj.hashin.m1':'Probekörper: <strong>100 × 20 mm</strong>, <strong>10 Lagen × 0,25 mm = 2,5 mm</strong>; symmetrisches Layup <strong>[0°, ±45°, 0°, 90°]s</strong>.',
'proj.hashin.m2':'Elemente: <strong>S4R</strong> Schalenelemente (~2 mm); Material: UD-Lage mit elastischen + Hashin-Parametern.',
'proj.hashin.m3':'Randbedingungen/Last: unten eingespannt; obere Kante an RP gekoppelt mit vorgeschriebener Y-Verschiebung.',
@@ -1428,7 +1414,7 @@
'proj.hashin.r2':'<strong>Druck:</strong> ±45° Matrix-Druck → 90° Matrix-Druck → 0° Faser-Druck; <strong>UCS ≈ 336 MPa</strong>.',
'proj.hashin.r3':'<strong>Verhältnis:</strong> UTS/UCS ≈ <strong>1,23</strong> (≈23 % stärker in Zug).',
'proj.hashin.cap1':'Mesh & Layup (S4R-Schalen)',
'proj.hashin.cap2':'Hashin-Karten First-Ply-Failure',
'proj.hashin.cap2':'Hashin-Karten - First-Ply-Failure',
'proj.hashin.cap3':'Zug σ–ε (stufenweise Steifigkeitsabfälle)',
'proj.hashin.cap4':'Druck σ–ε (stufenweise Steifigkeitsabfälle)',
'proj.hashin.ch1':'Hashin-Initiation',
@@ -1437,8 +1423,8 @@
'proj.hashin.ch4':'UCS 336 MPa',
'proj.hashin.ch5':'Verhältnis ≈ 1,23',
'proj.sec19.h4':'Heckrumpf Sektion 19 (Skin & Stringers)',
'proj.sec19.obj':'<strong>Ziel </strong> Skin- und Stringer-Konzept in Verbundbauweise festlegen, Verstärkungen, Drop-offs und Rahmenverbindungen (Clips, Ø4,8 mm) für ein Rumpffeld zwischen Rahmen AB.',
'proj.sec19.h4':'Heckrumpf - Sektion 19 (Skin & Stringers)',
'proj.sec19.obj':'<strong>Ziel -</strong> Skin- und Stringer-Konzept in Verbundbauweise festlegen, Verstärkungen, Drop-offs und Rahmenverbindungen (Clips, Ø4,8 mm) für ein Rumpffeld zwischen Rahmen AB.',
'proj.sec19.given':'Gegebene Daten',
'proj.sec19.g1':'<strong>Geometrie:</strong> Zylinder <strong>R = 4500 mm</strong>; Rahmenabstand <strong>550 mm</strong>; Stringer-Pitch <strong>150 mm</strong>.',
'proj.sec19.g2':'<strong>Material:</strong> UD, <strong>CPT 0,184 mm</strong>.',
@@ -1454,8 +1440,8 @@
'proj.sec19.ch3':'UD CPT 0,184 mm',
'proj.sec19.ch4':'Clips Ø 4,8 mm',
'proj.handle.h4':'Motorrad-Heckrahmen AlSi10Mg (SLM)',
'proj.handle.obj':'<strong>Ziel </strong> Möglichst leichten Sattel-Heckrahmen innerhalb der Hüllkurve konstruieren, lastfallkonform (statisch + Ermüdung), herstellbar per SLM (AlSi10Mg).',
'proj.handle.h4':'Motorrad-Heckrahmen - AlSi10Mg (SLM)',
'proj.handle.obj':'<strong>Ziel -</strong> Möglichst leichten Sattel-Heckrahmen innerhalb der Hüllkurve konstruieren, lastfallkonform (statisch + Ermüdung), herstellbar per SLM (AlSi10Mg).',
'proj.handle.p1':'<strong>AM-Setup:</strong> AlSi10Mg; SLM-Drucker <em>NXG XII 600</em> (590 × 560 × 367 mm).',
'proj.handle.p2':'<strong>Topologie:</strong> Spannungs­basiert (~2,8 kg) → <strong>Compliance-basiert</strong> (~2,06 kg) mit Rebuilds.',
'proj.handle.p3':'<strong>Schrauben (VDI 2230):</strong> Heckrahmen M8×4; Sattel M5×4; Vorspannung & Nachweise über Handrechnungen + MATLAB aus FEM-Reaktionen.',
@@ -1463,14 +1449,14 @@
'proj.handle.r1':'<strong>Sicherheitsfaktoren:</strong> &gt; 2 statisch, &gt; 1 Ermüdung (Goodman).',
'proj.handle.r2':'<strong>Durchbiegung:</strong> &lt; 2 mm unter definierten Lasten.',
'proj.handle.r3':'<strong>Endgewicht:</strong> ~<strong>656 g</strong> nach Optimierung mit kombinierten Lastkarten.',
'proj.handle.ch1':'AlSi10Mg SLM',
'proj.handle.ch1':'AlSi10Mg - SLM',
'proj.handle.ch2':'Topologie-optimiert',
'proj.handle.ch3':'VDI 2230',
'proj.handle.ch4':'SF&gt;2 / SF&gt;1',
'proj.handle.ch5':'~656 g',
'proj.drone.h4':'Verbund-Drone-Struktur',
'proj.drone.obj':'<strong>Ziel </strong> Laminataufbau und Dicken zur Gewichtsminimierung bei ausreichender Steifigkeit/Festigkeit festlegen; harmonische und Schlagprüfungen an kritischen Bauteilen.',
'proj.drone.obj':'<strong>Ziel -</strong> Laminataufbau und Dicken zur Gewichtsminimierung bei ausreichender Steifigkeit/Festigkeit festlegen; harmonische und Schlagprüfungen an kritischen Bauteilen.',
'proj.drone.li1':'Laminatfamilien für Arme und Mittelplatte (Lagenwinkel, Stapelregeln, Symmetrie/Balanz) ausgewählt.',
'proj.drone.li2':'<strong>Dickenoptimierung</strong> über Fluglast-Hüllkurven (Hover, Manöver, Landung).',
'proj.drone.li3':'FEM aufgebaut und <strong>harmonische Antwort</strong> extrahiert, Resonanznähe zu Rotorfrequenzen vermieden.',
@@ -1519,11 +1505,11 @@
'projects.card.stiff.title':'Paneles compuestos rigidizados',
'projects.card.stiff.teaser':'Verificaciones de pandeo y tolerancia al daño, optimización de layup (skin & stringers), verificación de flechas. <span class="where">UPM · FebMay 2025</span>',
'projects.card.hashin.title':'Laminado compuesto Hashin (Abaqus)',
'projects.card.hashin.title':'Laminado compuesto - Hashin (Abaqus)',
'projects.card.hashin.teaser':'Laminado UD a tracción vs compresión; fallo ply-by-ply con Hashin; análisis FEM. <span class="where">UPM · EneMar 2025</span>',
'projects.card.sec19.title':'Sección 19 del fuselaje trasero (Skin & Stringers)',
'projects.card.sec19.teaser':'Skin laminate y concepto de stringers, drop-offs, refuerzos, uniones a marcos (clips, Ø4,8 mm). <span class="where">UPM · EneMar 2024</span>',
'projects.card.handlebar.title':'Subchasis trasero de moto AlSi10Mg (SLM)',
'projects.card.handlebar.title':'Subchasis trasero de moto - AlSi10Mg (SLM)',
'projects.card.handlebar.teaser':'Optimización topológica, uniones atornilladas VDI 2230, validación estática/fatiga (Ansys), minimización de peso. <span class="where">Unibo · SepDic 2024</span>',
'projects.card.drone.title':'Estructura de dron compuesta',
'projects.card.drone.teaser':'Definición de laminado, optimización de espesores, análisis armónico y de impacto FEM. <span class="where">Unibo · FebJun 2023</span>',
@@ -1535,10 +1521,10 @@
'skills.adapt':'Adaptabilidad',
'skills.creative':'Resolución creativa de problemas',
'skills.langs':'Idiomas',
'lang.it':'Italiano Nativo',
'lang.es':'Español Fluido (C2)',
'lang.en':'Inglés Fluido (C1)',
'lang.de':'Alemán Básico (A1)',
'lang.it':'Italiano - Nativo',
'lang.es':'Español - Fluido (C2)',
'lang.en':'Inglés - Fluido (C1)',
'lang.de':'Alemán - Básico (A1)',
'contact.cta':'¿Colaboramos o necesitas el CV en otro formato? Escríbeme.',
'contact.locationTitle':'Ubicación actual:',
@@ -1581,7 +1567,7 @@
'exp.cpc.where':'Módena, IT',
'exp.cpc.p1':'Laminación de moldes <strong>CFRP</strong> y de un chasis para el equipo de Formula SAE.',
/* PROYECTOS común */
/* PROYECTOS - común */
'proj.common.what':'Qué hice',
'proj.common.model':'Modelo',
'proj.common.tools':'Herramientas',
@@ -1589,15 +1575,15 @@
'proj.common.process':'Proceso',
'proj.common.download':'📄 Descargar informe',
/* === PROYECTOS Detalles (ES) === */
/* === PROYECTOS - Detalles (ES) === */
'proj.stiff.h4':'Paneles compuestos rigidizados',
'proj.stiff.obj':'<strong>Objetivo </strong> Diseñar y validar paneles CFRP con rigidizadores, minimizando peso y cumpliendo requisitos de pandeo y tolerancia al daño.',
'proj.stiff.obj':'<strong>Objetivo -</strong> Diseñar y validar paneles CFRP con rigidizadores, minimizando peso y cumpliendo requisitos de pandeo y tolerancia al daño.',
'proj.stiff.li1':'Definí <strong>layups</strong> para piel y stringers (simetría, balance, porcentajes de capas).',
'proj.stiff.li2':'<strong>Pre-dimensioné</strong> refuerzos y verifiqué <strong>pandeo local/global</strong> y <strong>crippling</strong> de stringers.',
'proj.stiff.li3':'Comprobé <strong>flechas</strong> y <strong>márgenes de seguridad (MS)</strong> vs requisitos.',
'proj.stiff.li4':'Realicé <strong>optimización de espesores</strong> (peso vs rigidez/estabilidad) con feedback FEM.',
'proj.stiff.li5':'Usé <strong>modos de pandeo</strong> para guiar iteraciones de rediseño.',
'proj.stiff.tools':'Abaqus / Ansys para FEM; hojas de cálculo de ingeniería; reglas aeronáuticas de laminado.',
'proj.stiff.tools':'Calculos a mano; hojas de cálculo de ingeniería; reglas aeronáuticas de laminado.',
'proj.stiff.r1':'Reducción de peso: <strong>≈ XY %</strong>.',
'proj.stiff.r2':'<strong>MS ≥ 0</strong> para pandeo y crippling en casos críticos.',
'proj.stiff.r3':'<strong>Flechas ≤</strong> límite especificado.',
@@ -1609,8 +1595,8 @@
'proj.stiff.ch3':'Impulsado por FEM',
'proj.stiff.ch4':'MS ≥ 0',
'proj.hashin.h4':'Laminado compuesto Hashin (Abaqus)',
'proj.hashin.obj':'<strong>Objetivo </strong> Simular un laminado UD a tracción y compresión con <em>inicio de daño Hashin</em> para identificar fallo ply-by-ply y comparar capacidad a tracción vs compresión.',
'proj.hashin.h4':'Laminado compuesto - Hashin (Abaqus)',
'proj.hashin.obj':'<strong>Objetivo -</strong> Simular un laminado UD a tracción y compresión con <em>inicio de daño Hashin</em> para identificar fallo ply-by-ply y comparar capacidad a tracción vs compresión.',
'proj.hashin.m1':'Probeta: <strong>100 × 20 mm</strong>, <strong>10 capas × 0,25 mm = 2,5 mm</strong>; layup simétrico <strong>[0°, ±45°, 0°, 90°]s</strong>.',
'proj.hashin.m2':'Elementos: <strong>S4R</strong> de cascarón (~2 mm); material: lamina UD con elástico + parámetros Hashin.',
'proj.hashin.m3':'BC/Carga: borde inferior empotrado; borde superior acoplado a RP con desplazamiento prescrito en Y.',
@@ -1619,60 +1605,14 @@
'proj.hashin.r2':'<strong>Compresión:</strong> ±45° matriz-compresión → 90° matriz-compresión → 0° fibra-compresión; <strong>UCS ≈ 336 MPa</strong>.',
'proj.hashin.r3':'<strong>Relación:</strong> UTS/UCS ≈ <strong>1,23</strong> (≈23 % más fuerte a tracción).',
'proj.hashin.cap1':'Malla & layup (S4R cascarón)',
'proj.hashin.cap2':'Mapas Hashin first-ply failure',
'proj.hashin.cap2':'Mapas Hashin - first-ply failure',
'proj.hashin.cap3':'σ–ε tracción (caídas escalonadas de rigidez)',
'proj.hashin.cap4':'σ–ε compresión (caídas escalonadas de rigidez)',
'proj.hashin.ch1':'Hashin initiation',
'proj.hashin.ch2':'[0/±45/0/90]s',
'proj.hashin.ch3':'UTS 413 MPa',
'proj.hashin.ch4':'UCS 336 MPa',
'proj.hashin.ch5':'Relación ≈ 1,23',
'proj.sec19.h4':'Sección 19 del fuselaje trasero (Skin & Stringers)',
'proj.sec19.obj':'<strong>Objetivo —</strong> Definir skin y stringers en compuesto, refuerzos, drop-offs y uniones a marcos (clips, Ø4,8 mm) para una bahía entre marcos AB.',
'proj.sec19.given':'Datos de partida',
'proj.sec19.g1':'<strong>Geometría:</strong> cilindro <strong>R = 4500 mm</strong>; separación de marcos <strong>550 mm</strong>; pitch de stringers <strong>150 mm</strong>.',
'proj.sec19.g2':'<strong>Material:</strong> UD, <strong>CPT 0,184 mm</strong>.',
'proj.sec19.g3':'<strong>Skin:</strong> base <strong>9 capas (2/4/3)</strong>; refuerzo <strong>14 capas (2/8/4)</strong>, parche <strong>100 × 70 mm</strong>.',
'proj.sec19.g4':'<strong>Stringers:</strong> <strong>h &lt; 35 mm</strong>, <strong>R ≥ 3 mm</strong>; alma <strong>20 capas</strong> (50 % 0° / 40 % ±45° / 10 % 90°); <strong>alma = 2× alas</strong>.',
'proj.sec19.g5':'<strong>Uniones:</strong> clips + <strong>Ø 4,8 mm</strong>.',
'proj.sec19.li1':'Construí la geometría maestra (marcos & stringers en la piel), ajusté pitch y anchuras de pies.',
'proj.sec19.li2':'Mapeé layups de piel, drop-offs y huella del refuerzo.',
'proj.sec19.li3':'Dimensioné alma/alas del stringer y verifiqué reparabilidad (L1 para Ø4,8 mm).',
'proj.sec19.li4':'Definí uniones con clips y preparé planos, lista de materiales y peso del panel.',
'proj.sec19.ch1':'R 4500 mm',
'proj.sec19.ch2':'Pitch 150 mm',
'proj.sec19.ch3':'UD CPT 0,184 mm',
'proj.sec19.ch4':'Clips Ø 4,8 mm',
'proj.handle.h4':'Subchasis trasero de moto — AlSi10Mg (SLM)',
'proj.handle.obj':'<strong>Objetivo —</strong> Diseñar el subchasis más ligero posible dentro del sobre geométrico, conforme a cargas (estático + fatiga), fabricable por SLM (AlSi10Mg).',
'proj.handle.p1':'<strong>AM setup:</strong> AlSi10Mg; impresora SLM <em>NXG XII 600</em> (590 × 560 × 367 mm).',
'proj.handle.p2':'<strong>Topología:</strong> basado en tensiones (~2,8 kg) → <strong>basado en cumplimiento</strong> (~2,06 kg) con reconstrucciones.',
'proj.handle.p3':'<strong>Tornillería (VDI 2230):</strong> Subchasis M8×4; asiento M5×4; pretensado & comprobaciones con cálculos manuales + MATLAB a partir de reacciones FEM.',
'proj.handle.p4':'<strong>Validación (Ansys):</strong> estática + fatiga; convergencia de malla ~1,5 mm; refinamientos locales en tornillos.',
'proj.handle.r1':'<strong>Factores de seguridad:</strong> &gt; 2 estático, &gt; 1 fatiga (Goodman).',
'proj.handle.r2':'<strong>Flecha:</strong> &lt; 2 mm bajo cargas definidas.',
'proj.handle.r3':'<strong>Peso final:</strong> ~<strong>656 g</strong> tras optimización con mapa de cargas combinadas.',
'proj.handle.ch1':'AlSi10Mg — SLM',
'proj.handle.ch2':'Topología optimizada',
'proj.handle.ch3':'VDI 2230',
'proj.handle.ch4':'SF&gt;2 / SF&gt;1',
'proj.handle.ch5':'~656 g',
'proj.drone.h4':'Estructura de dron compuesta',
'proj.drone.obj':'<strong>Objetivo —</strong> Definir laminado y espesores para minimizar peso manteniendo rigidez y resistencia; comprobaciones armónicas y de impacto en miembros críticos.',
'proj.drone.li1':'Seleccioné familias de laminados para brazos y placa central (ángulos, reglas de apilamiento, simetría/balance).',
'proj.drone.li2':'<strong>Optimización de espesores</strong> bajo envolventes de carga de vuelo (hover, maniobra, aterrizaje).',
'proj.drone.li3':'Construí FEM y extraje <strong>respuesta armónica</strong> para evitar resonancia cerca de frecuencias de rotores.',
'proj.drone.li4':'Realicé <strong>escenarios de impacto</strong> en zonas débiles (uniones brazo-buje, bordes de aterrizaje).',
'proj.drone.r1':'Reducción de peso vs baseline manteniendo <strong>MS ≥ 0</strong> en verificaciones estáticas.',
'proj.drone.r2':'Se logró separación mínima respecto a frecuencias inducidas por el rotor.',
'proj.drone.r3':'Refuerzos locales añadidos sólo donde fue necesario tras la evaluación de impacto.',
'proj.drone.ch1':'Optimización de layup',
'proj.drone.ch2':'Chequeo armónico',
'proj.drone.ch3':'FEM de impacto',
'proj.drone.ch4':'MS ≥ 0'
'proj.hashin.ch5':'Relación ≈ 1,23'
}
};

Binary file not shown.

After

Width:  |  Height:  |  Size: 188 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 139 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 160 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 190 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 199 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 138 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 181 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

After

Width:  |  Height:  |  Size: 71 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 313 KiB

After

Width:  |  Height:  |  Size: 331 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 878 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

Binary file not shown.