import seaborn as sns import matplotlib.pyplot as plt import yaml import pandas as pd import numpy as np import os # Function to read and parse the file def read_metrics(file_path): with open(file_path, 'r') as file: data = yaml.safe_load(file) return data['runs'] # Read metrics from the file file_path = 'project/metrics.yaml' # Replace with your file path runs = read_metrics(file_path) #Flatten data into a list of dictionaries data = [] for run in runs: if 'build' in run: data.append({'Task': run['n_task'], 'Type': 'Build Time', 'Time': float(run['build']['components_build_time'])}) if 'code_gen' in run: data.append({'Task': run['n_task'], 'Type': 'Generation Time', 'Time': float(run['code_gen']['gen_time'])}) if 'deploy' in run: data.append({'Task': run['n_task'], 'Type': 'Deployment Time', 'Time': float(run['deploy']['components_deploy_time'])}) # Convert to DataFrame df = pd.DataFrame(data) # Make sure the benchmark directory exists os.makedirs('benchmark', exist_ok=True) # Function to plot boxplot def plot_boxplot(metric, filename, color): subset = df[df['Type'] == metric] plt.figure(figsize=(10, 6)) sns.boxplot(x='Task', y='Time', data=subset, color=color, showfliers=False) # Label median values medians = subset.groupby('Task')['Time'].median() for i, task in enumerate(medians.index): median_value = medians[task] plt.text(i, median_value, f'{median_value:.3f}', ha='center', va='center', fontsize=10, color='white', bbox=dict(facecolor='black', alpha=0.6, boxstyle='round,pad=0.3')) plt.ylabel('Time (seconds)') plt.grid(True, linestyle='--', alpha=0.7) plt.tight_layout() plt.savefig(f'benchmark/{filename}') plt.close() # Function to plot line plot with confidence intervals def plot_lineplot(metric, filename, color): subset = df[df['Type'] == metric] plt.figure(figsize=(10, 6)) sns.lineplot(x='Task', y='Time', data=subset, errorbar=('ci', 95), color=color, linewidth=2, marker='o') # Fill missing x-axis values min_task = subset['Task'].min() max_task = subset['Task'].max() all_tasks = np.arange(min_task, max_task + 1) plt.xticks(all_tasks) # Label points for i, row in subset.groupby('Task')['Time'].median().reset_index().iterrows(): plt.text(row['Task'], row['Time'], f'{row["Time"]:.3f}', ha='center', va='bottom', fontsize=10) plt.xlabel('Number of Tasks') plt.ylabel('Time (seconds)') plt.grid(True, linestyle='--', alpha=0.7) plt.tight_layout() plt.savefig(f'benchmark/{filename}') plt.close() # Plot each metric separately plot_boxplot('Build Time', 'build_time_boxplot.png', 'skyblue') plot_lineplot('Build Time', 'build_time_lineplot.png', 'skyblue') plot_boxplot('Generation Time', 'gen_time_boxplot.png', 'lightgreen') plot_lineplot('Generation Time', 'gen_time_lineplot.png', 'lightgreen') plot_boxplot('Deployment Time', 'deploy_time_boxplot.png', 'salmon') plot_lineplot('Deployment Time', 'deploy_time_lineplot.png', 'salmon') print('Plots saved successfully in "benchmark" directory!')