moved plots to utils

This commit is contained in:
Lorenzo Venerandi
2025-04-01 17:55:34 +02:00
parent 69e02b2bdd
commit c3b39b7284
3 changed files with 44 additions and 7 deletions

31
utils/plot-startup.py Normal file
View File

@@ -0,0 +1,31 @@
import matplotlib.pyplot as plt
import seaborn as sns
import random
import pandas as pd
# Genera i dati mock
data = [{"tempo di esecuzione": round(random.gauss(23, 1), 3)} for _ in range(9)]
df = pd.DataFrame(data)
# Creazione del boxplot con grafico più largo e barra più stretta
plt.figure(figsize=(10, 6)) # Grafico più largo
ax = sns.boxplot(y=df["tempo di esecuzione"], width=0.3, flierprops={"marker": "o", "color": "red", "markersize": 8}, color="lightgreen")
# Calcolo della media
mean_value = df["tempo di esecuzione"].mean()
# Aggiungi il testo della media alla base
plt.text(0, 0, f'Media: {mean_value:.2f}', ha='center', va='bottom', fontsize=14, fontweight='bold', color="black")
# Imposta i label con font più grande
plt.ylabel("Downtime (s)", fontsize=14)
plt.xticks([]) # Rimuove i tick sull'asse X
plt.yticks(fontsize=12)
# Mostra griglia leggera
plt.grid(axis='y', linestyle='--', alpha=0.6)
# Salva il plot
plt.tight_layout()
plt.savefig("benchmark/boxplot_failover.png")
plt.show()

View File

@@ -0,0 +1,98 @@
import seaborn as sns
import matplotlib.pyplot as plt
import yaml
import pandas as pd
import numpy as np
import os
# Function to read and parse a metric file
def read_metrics(file_path, label):
with open(file_path, 'r') as file:
data = yaml.safe_load(file)
runs = data['runs']
extracted_data = []
for run in runs:
if 'build' in run:
extracted_data.append({'Task': run['n_task'], 'Type': 'Build Time', 'Time': float(run['build']['components_build_time']), 'Source': label})
if 'code_gen' in run:
extracted_data.append({'Task': run['n_task'], 'Type': 'Generation Time', 'Time': float(run['code_gen']['gen_time']), 'Source': label})
if 'deploy' in run:
extracted_data.append({'Task': run['n_task'], 'Type': 'Deployment Time', 'Time': float(run['deploy']['components_deploy_time']), 'Source': label})
if 'time_total' in run:
extracted_data.append({'Task': run['n_task'], 'Type': 'Total Time', 'Time': float(run['time_total']), 'Source': label})
return extracted_data
# Paths for the two metric files
file_path_1 = 'res/metrics/metrics-parallel-nats.yaml' # First metrics file
file_path_2 = 'res/metrics/metrics-sequential.yaml' # Second metrics file
# Read and combine the data
data1 = read_metrics(file_path_1, 'Esecuzione Parallelizzata')
data2 = read_metrics(file_path_2, 'Esecuzione Sequenziale')
df = pd.DataFrame(data1 + data2)
# Ensure benchmark directory exists
os.makedirs('benchmark', exist_ok=True)
# Function to plot boxplot
def plot_boxplot(metric, filename):
subset = df[df['Type'] == metric]
plt.figure(figsize=(10, 6))
sns.boxplot(x='Task', y='Time', hue='Source', data=subset, showfliers=False)
plt.ylabel('Time (seconds)')
plt.grid(True, linestyle='--', alpha=0.7)
plt.legend(title='Source')
plt.tight_layout()
plt.savefig(f'benchmark/{filename}')
plt.close()
# Function to plot line plot with confidence intervals
def plot_lineplot(metric, filename):
subset = df[df['Type'] == metric]
plt.figure(figsize=(10, 6))
sns.lineplot(x='Task', y='Time', hue='Source', data=subset, errorbar=('ci', 95), linewidth=2, marker='o')
plt.xlabel('Number of Tasks')
plt.ylabel('Time (seconds)')
plt.grid(True, linestyle='--', alpha=0.7)
plt.legend(title='Source')
plt.tight_layout()
plt.savefig(f'benchmark/{filename}')
plt.close()
# Function to plot bar plot with confidence intervals
def plot_barplot(metric, filename):
subset = df[df['Type'] == metric]
plt.figure(figsize=(10, 6))
sns.barplot(x='Task', y='Time', hue='Source', data=subset, errorbar=('ci', 95), palette=['salmon', 'skyblue'])
plt.xlabel('Task', fontsize=14) # Aumenta la dimensione del font dell'asse X
plt.ylabel('Time (seconds)', fontsize=14) # Aumenta la dimensione del font dell'asse Y
plt.xticks(fontsize=12) # Modifica la dimensione del font dei tick dell'asse X
plt.yticks(fontsize=12) # Modifica la dimensione del font dei tick dell'asse Y
plt.legend(title='Source', title_fontsize=14, fontsize=12) # Modifica il font della legenda
plt.grid(True, linestyle='--', alpha=0.7)
plt.tight_layout()
plt.savefig(f'benchmark/{filename}')
plt.close()
# Generate plots for each metric
metrics = ['Build Time', 'Generation Time', 'Deployment Time', 'Total Time']
filenames = ['build_time', 'gen_time', 'deploy_time', 'total_time']
for metric, filename in zip(metrics, filenames):
#plot_boxplot(metric, f'{filename}_boxplot.png')
#plot_lineplot(metric, f'{filename}_lineplot.png')
plot_barplot(metric, f'{filename}_paired_barplot.png')
print('Comparison plots saved successfully in "benchmark" directory!')

113
utils/plot_metrics.py Normal file
View File

@@ -0,0 +1,113 @@
import seaborn as sns
import matplotlib.pyplot as plt
import yaml
import pandas as pd
import numpy as np
import os
# Function to read and parse the file
def read_metrics(file_path):
with open(file_path, 'r') as file:
data = yaml.safe_load(file)
return data['runs']
# Read metrics from the file
file_path = 'res/metrics-parallel.yaml' # Replace with your file path
runs = read_metrics(file_path)
# Flatten data into a list of dictionaries
data = []
for run in runs:
if 'build' in run:
data.append({'Task': run['n_task'], 'Type': 'Build Time', 'Time': float(run['build']['components_build_time'])})
if 'code_gen' in run:
data.append({'Task': run['n_task'], 'Type': 'Generation Time', 'Time': float(run['code_gen']['gen_time'])})
if 'deploy' in run:
data.append({'Task': run['n_task'], 'Type': 'Deployment Time', 'Time': float(run['deploy']['components_deploy_time'])})
if 'time_total' in run:
data.append({'Task': run['n_task'], 'Type': 'Total Time', 'Time': float(run['time_total'])})
# Convert to DataFrame
df = pd.DataFrame(data)
# Make sure the benchmark directory exists
os.makedirs('benchmark', exist_ok=True)
# Function to plot boxplot
def plot_boxplot(metric, filename, color):
subset = df[df['Type'] == metric]
plt.figure(figsize=(10, 6))
sns.boxplot(x='Task', y='Time', data=subset, color=color, showfliers=False)
# Label median values
medians = subset.groupby('Task')['Time'].median()
for i, task in enumerate(medians.index):
median_value = medians[task]
plt.text(i, median_value, f'{median_value:.3f}', ha='center', va='center', fontsize=10, color='white',
bbox=dict(facecolor='black', alpha=0.6, boxstyle='round,pad=0.3'))
plt.ylabel('Time (seconds)')
plt.grid(True, linestyle='--', alpha=0.7)
plt.tight_layout()
plt.savefig(f'benchmark/{filename}')
plt.close()
# Function to plot line plot with confidence intervals
def plot_lineplot(metric, filename, color):
subset = df[df['Type'] == metric]
plt.figure(figsize=(10, 6))
sns.lineplot(x='Task', y='Time', data=subset, errorbar=('ci', 95), color=color, linewidth=2, marker='o')
min_task = subset['Task'].min()
max_task = subset['Task'].max()
all_tasks = np.arange(min_task, max_task + 1)
plt.xticks(all_tasks)
for i, row in subset.groupby('Task')['Time'].median().reset_index().iterrows():
plt.text(row['Task'], row['Time'], f'{row["Time"]:.3f}', ha='center', va='bottom', fontsize=10)
plt.xlabel('Number of Tasks')
plt.ylabel('Time (seconds)')
plt.grid(True, linestyle='--', alpha=0.7)
plt.tight_layout()
plt.savefig(f'benchmark/{filename}')
plt.close()
# Function to plot bar plot with confidence intervals
def plot_barplot(metric, filename, color):
subset = df[df['Type'] == metric]
plt.figure(figsize=(10, 6))
sns.barplot(x='Task', y='Time', data=subset, color=color, errorbar=('ci', 95))
means = subset.groupby('Task')['Time'].mean()
for i, task in enumerate(means.index):
mean_value = means[task]
plt.text(i, 0, f'{mean_value:.3f}', ha='center', va='bottom', fontsize=10, alpha=0.7)
plt.ylabel('Time (seconds)')
plt.grid(True, linestyle='--', alpha=0.7)
plt.tight_layout()
plt.savefig(f'benchmark/{filename}')
plt.close()
# Plot each metric separately
#plot_boxplot('Build Time', 'build_time_boxplot.png', 'skyblue')
#plot_lineplot('Build Time', 'build_time_lineplot.png', 'skyblue')
plot_barplot('Build Time', 'build_time_barplot.png', 'skyblue')
#plot_boxplot('Generation Time', 'gen_time_boxplot.png', 'lightgreen')
#plot_lineplot('Generation Time', 'gen_time_lineplot.png', 'lightgreen')
plot_barplot('Generation Time', 'gen_time_barplot.png', 'lightgreen')
#plot_boxplot('Deployment Time', 'deploy_time_boxplot.png', 'salmon')
#plot_lineplot('Deployment Time', 'deploy_time_lineplot.png', 'salmon')
plot_barplot('Deployment Time', 'deploy_time_barplot.png', 'salmon')
#plot_boxplot('Total Time', 'total_time_boxplot.png', 'purple')
#plot_lineplot('Total Time', 'total_time_lineplot.png', 'purple')
plot_barplot('Total Time', 'total_time_barplot.png', 'orange')
print('Plots saved successfully in "benchmark" directory!')