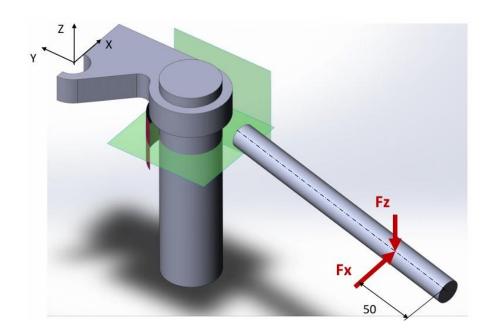


DESIGN OF A MOTORBIKE HANDLEBAR BRACKET

Candidate

Alessandro Acuna


PROJECT DETAILS

Boundary conditions

The geometry must be contained between the green planes

Fasteners with maximum class of 12.9

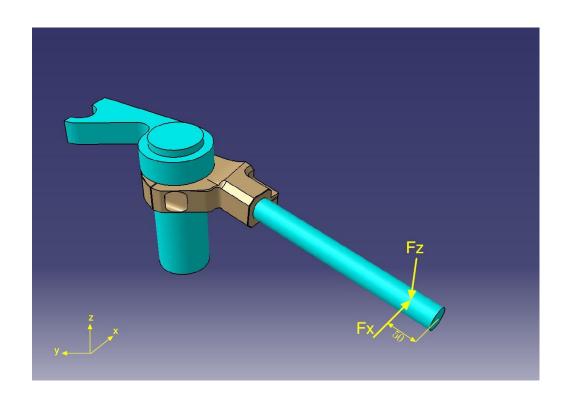
10⁵ cycles life target

The final **GOAL** is to design the lightest component possible, according to the given limitations.

ASSIGNED MATERIAL

The material used is the alluminum alloy **EN AW 2024 T3**

Property	Value		
Density	2.77 x 10 ³ kg/m ³		
Young's Modulus	73 100 MPa		
Poisson's Ratio	0.33		
Yield Strength	345 MPa		
Ultimate Strength	483 MPa		

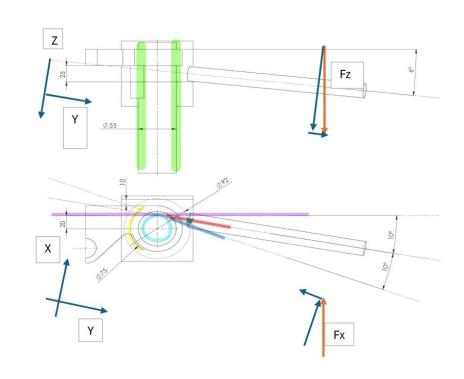


LOADING CONDITIONS

The component is subjected to static and cyclic loads, situated near the extremity of the handlebar.

Load conditions for Maximum Force Analysis		
F _{z max}	100 N	
F _{x max}	450 N	

Load conditions for Fatigue Analysis			
F _z 50 N			
F _x	±350 N		



FORCES RESOLUTION

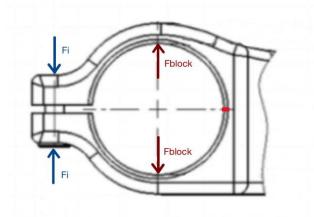
Tilt Angles	
6° downwards	
±10° around the vertical axis	

Const	Constraint Reactions ZY		Constraint Reactions YX	
Y _a	-10.5 N	Y _a	78.1 N	
Z _a	99.5 N	X _a	-443.2 N	
M _{a,zy}	26 901.8 Nmm	M _{a,yx}	-119 875.7 Nmm	

BOLT SIZING

- VDI 2230 standard was used to calculate the diameter of the bolt.
- Bolt 10.9 Class, following ISO 4762 was chosen.
- Tightening process done by a torque wrench.

Handlebar BOLT		
F _A	1375,59	N
FQ	67,69	N
F _Q /µ	173,56	N
Fn	1600,00	N
Fm _{MIN}	4000,00	N
Fm _{MAX}	10000,00	N
d	6,00	mm
aA	2,50	141


Fork BOLT			
Fn	2315,97	N	
Fq	67,69	N	
F _Q /µ	173,56	N	
Fn	2500,00	N	
Fm _{MIN}	6300,00	N	
Fm _{MAX}	10000,00	N	
d	6,00	mm	
aA	1,59	373	

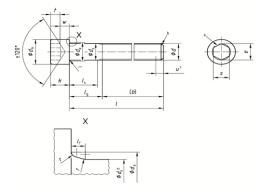
COUPLING PRESSURE BETWEEN HANDLEBAR BRACKET AND BAR

The screw must not only keep the part fixed in place to prevent detachment, but it must also resist bending moments due to the forces on the handlebar.

Results			
F _{block}	3876.6 N		
F_i	1375.5 N		
Design Tightening Torque	3939.1 Nmm		
$\sigma_{\sf eq}$	144.8 MPa	<s<sub>p =810 MPa</s<sub>	
A _{tdesign}	5.16 mm ²	<a<sub>tselected = 20.12 mm</a<sub>	
$\sigma_{\text{eq_o}}$		141.2 MPa	

For a more realisic result we assumed a weight of the pilot of 70 kg and a CS of 1,5.

COUPLING PRESSURE BETWEEN HANDLEBAR BRACKET AND FORK


Results			
F _{block}	10749.5 N		
F _i	2315.9 N		
Design Tightening Torque	7 395.2 Nmm		
$\sigma_{ m eq}$	243.7 MPa	<s<sub>p =810 MPa</s<sub>	
A _{tdesign}	8.18 mm ²	<a<sub>tselected = 20.12 mm</a<sub>	
$\sigma_{ m eq_o}$	158.3 MPa		

The methodology used for calculating the various parameters are the ones of the previous case.

CALCULATION

Coupling Pressure between Handl	ebar and Fo	ork	
Ultime Tensile Strength S _u	1000,00	MPa	
Yield Strength S _y	900,00	MPa	
Resistent Area A _t	20,12	mm ²	
Resistent Diameter d _t	5,06	mm	
Metric Nominal Diameter d	6,00	mm	М6
Friction coefficient of thread μ_{th}	0,39	-	
Friction coefficient of Bolt head µ _b	0,39	-	
Screw head diameter d _k	10,00	mm	ISO 4762-2004
Underhead Diameter d _w	9,38	mm	
Screw Pitch p	1,00	-	ISO 4762-2004
Pitch Diameter d ₂ min	5,21	mm	ISO 965-2
Pitch Diameter d ₂ max	5,32	mm	ISO 965-2
d ₂	5,35	mm	
Min Major Diameter d _{min}	5,97	mm	ISO 965-2
Max Major Diameter d _{max}	5,79	mm	ISO 965-2
Average Major Diameter d _{mean}	5,88	mm	
Torsional Modulus W _t	12,73	mm ³	
Preload on each Bolt F _i	2315,97	N	
F _{block}	10749,58	N	
Number of Bolts	2,00	-	
Design Tightening Torque	7395,16	Nmm	
Sigma under tightening condition σ_{eq}	243,75	MPa	$< S_p = v * S_y$
Stress Ratio SR	2,86	Steel-All	
$A_{t_minimum}$	8,18	mm ²	< A _{t_selected}
Sigma under operating condition σ_{eq_o}	158,35	MPa	
Underhead Loading R _n	100,00	N	
Coefficient of Torsional Relaxation k _t	0,50	-	

$$\mathbf{A}_{\underline{\mathsf{t}}_\mathsf{design}} \cong \frac{SR \cdot F}{S_p}$$

$$SR = \frac{\sigma_{eq}}{\sigma_{axial}} = \frac{S_p \cdot A_t}{F_i}$$

$$A_{t \text{ selected}} \ge A_{t \text{ design}}$$

Design assessment under tightening condition

$$\sigma_{eq} = \sqrt{\left(\frac{F_i}{A_i}\right)^2 + 3 \cdot \left(\frac{M_{shank}}{W_i}\right)^2} = \sqrt{F_i^2 + 48 \cdot \left(F_i \cdot \frac{\left(0.16 \cdot p + 0.58 \cdot \mu_{th} \cdot d_2\right)}{d_i}\right)^2 \cdot \frac{1}{A_i}} \leq V R_{p0.2} = S_i + \frac{1}{2} \left(\frac{M_{shank}}{W_i}\right)^2 + \frac{1}{2}$$

Design assessment under operating condition

Screw

During operation, the screw may undergo additional axial loads due to applied external loads R_n while the shank torsion is reportedly lower than during tightening. German standard VDI 2230 and Bickford report that such a decrease in torsional stress can be as high as 50% when R_n and R_t are static, whereas a 100% reduction can take place in the case of dynamic loading. This reduction is due to mutual torsional sliding occurring between the screw head and underhead.

$$\sigma_{eq-o} = \sqrt{\frac{F_b}{A_t}^2 + 3 \cdot \left(\frac{M_{shank}}{W_t}\right)^2} \cong \sqrt{\frac{\left(F_t + R_b \cdot 0.25\right)^2 + 48 \cdot \left(F_t \left(k_t \cdot \frac{\left(0.16 \cdot p + 0.58 \cdot \mu_{th} \cdot d_2\right)}{d_t}\right)^2}{\left(0.16 \cdot p + 0.58 \cdot \mu_{th} \cdot d_2\right)}} \cdot \frac{1}{A_t}}$$

 $\mathbf{k_t}$ coefficient of torsional relaxation of the screw (0≤ k_t ≤0,9)...see next slides

CALCULATION

Stiffness Calculations Handlebar_Fork Bolt		
Shank length	2,10	mm
Nominal Diameter	6,00	mm
An	28,27	mm ²
Engage length	5,00	mm
Not engaged length	10,00	mm
Underhead Diameter	9,38	mm
Eal2024	73100,00	MPa
Ebolt	210000,00	MPa
Head Stiff.	89064151,73	N/mm
Shank Stiff.	2827433,39	N/mm
Thread Stiff.	81409933,27	N/mm
Engaged Thread Stiff.	8140993326,60	N/mm
Al Stiff engaged	31002807,10	N/mm
Equivalent Compliance	3,97283E-07	mm/N
Equivalent Bolt Stiffness	2517094,27	N/mm
Kplate	2197372,51	N/mm
Kplate/Kbolt	0,87	-
LoadFactor	0,47	-

Minimum Engaged leng	Minimum Engaged length Bolt Handlebar_Bar		
Rs	1,391	(5)	
C1	1,000	1921	
C3	0,897	7.93	
Tau_bm	272,600	MPa	
Pitch	1,000	\(\frac{1}{2}\)	
Rm	470,000	Mpa	
d	6,000	mm	
D1	5,5	mm	
D2	5,153	mm	
As	20,123	mm^2	
m_eff	2,875	mm	

Following the VDI 2230 standard, bolt assessment was conducted.

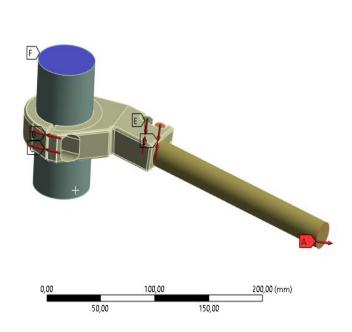
M6 x 1 was selected.

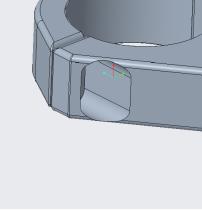
Surface Pressure						
Handlebar_Bar			Handlebar_Fork			
Underhead Diameter dw	9,38	mm	Underhead Diameter	9,38	mm	
Coupling Diameter ds	3,82	mm	Coupling Diameter	5,82	mm	
Underhead Area	24,28	mm ²	Underhead Area	9,95	mm^2	
Underhead Pressure	56,66	MPa	Underhead Pressure	232,67	MPa	

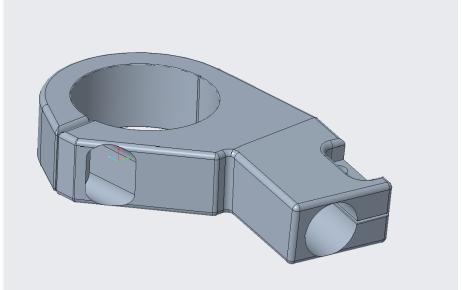
PRELIMINARY DESIGN ANALYSIS

B: Static Stress with Bolt Static Structural

Time: 2, s

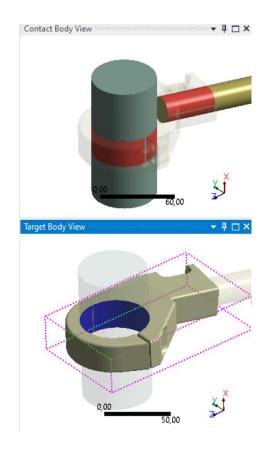

A Force: 1192,7 N

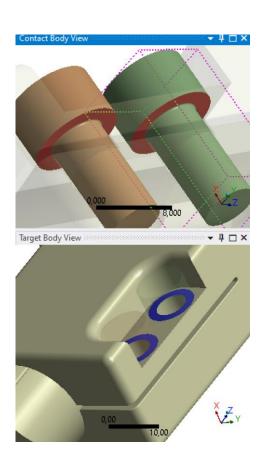

Bolt Pretension: Lock

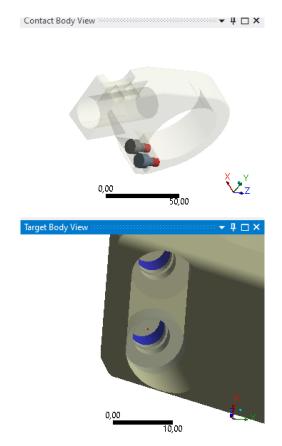

Bolt Pretension 2: Lock Bolt Pretension 3: Lock

Bolt Pretension 4: Lock

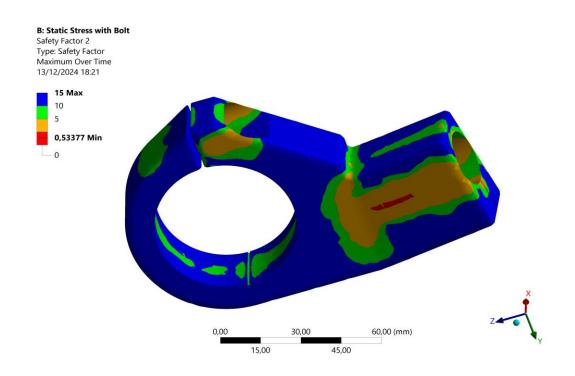
Fixed Support

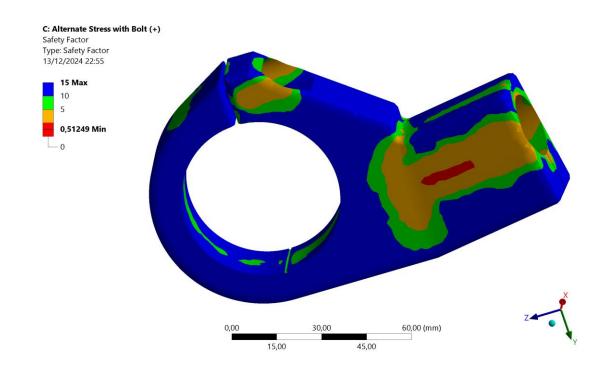





0,278 Kg

FEM - CONTACT



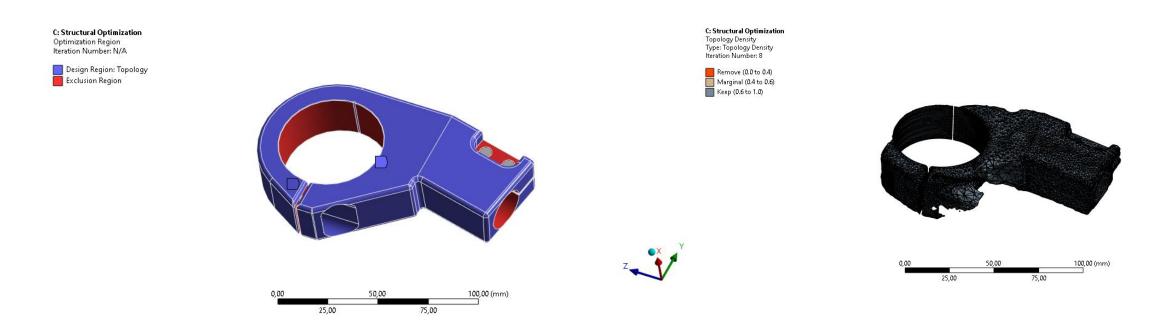


Friction coefficients				
Thread	0.39			
Bolt underhead and handlebar bracket	0.39			
Fork and handlebar	0.2			

PRELIMINARY DESIGN RESULT

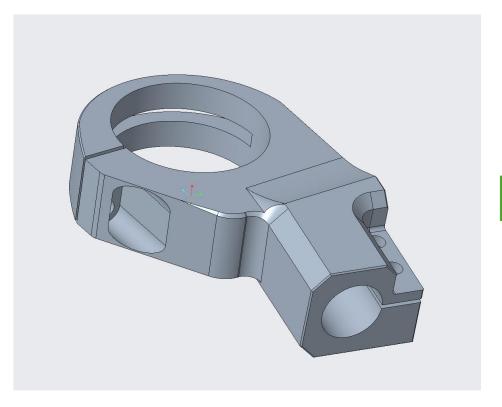
WORKFLOW

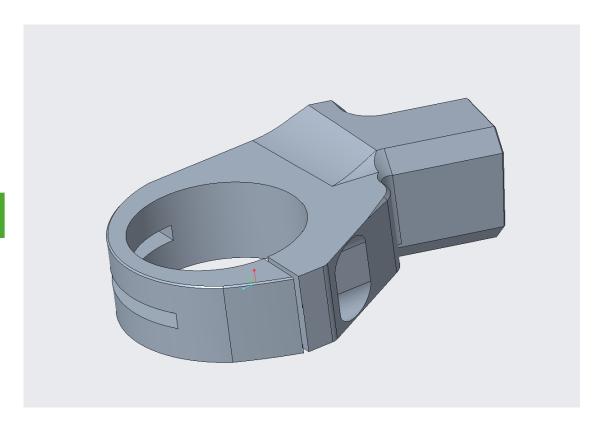
Manufacturing Constraints


Structural Optimization

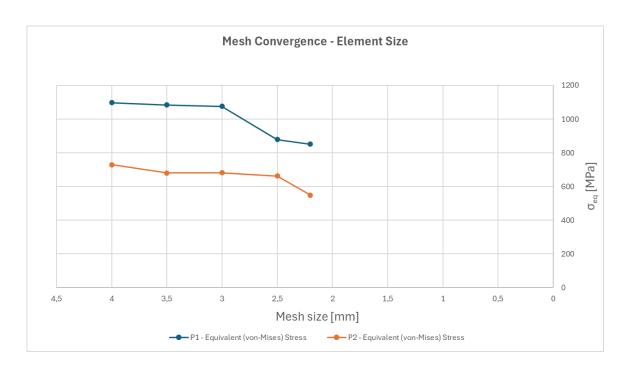
Design

FEM Analysis


OPTIMIZATION


Structural Optimization Tool removed the less stressed material, leaving mass in the most stressed areas.

FINAL DESIGN

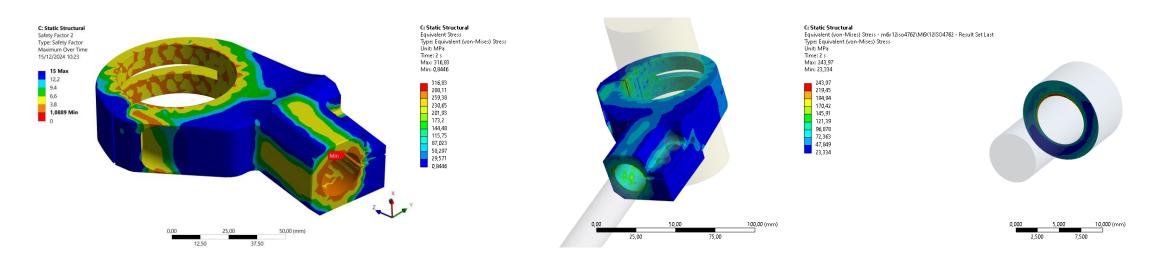


0,271 Kg

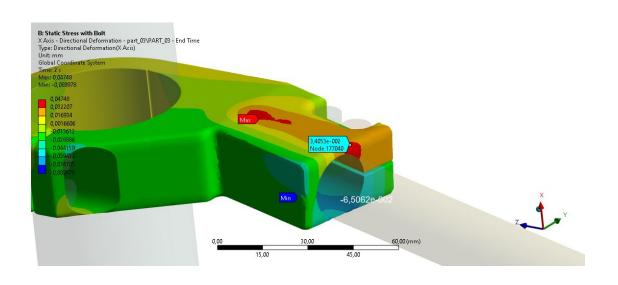
MESH CONVERGENCE

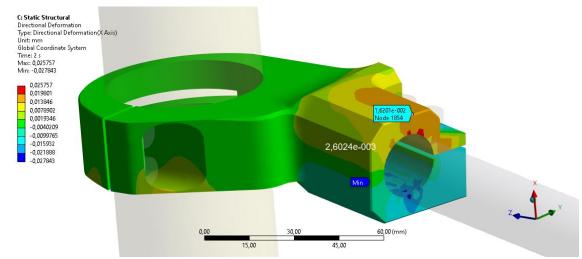
After some mesh refinements iterations, general 2,5mm mesh size was the best choice for validation FEM.

The most relevant, including the bolts', were meshed with 1 mm mesh size, plus others refinements.



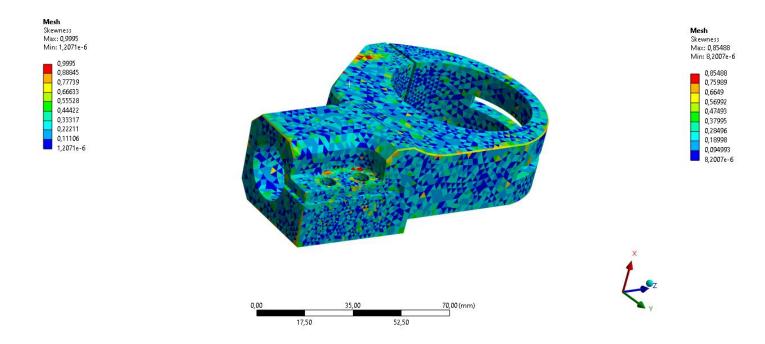
FEM RESULTS

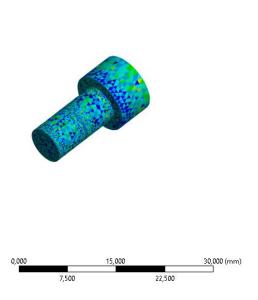

Static Max Loads SF


Equivalent Von Mises Stress σ_{eq}

Underhead Pressure

OLD VS NEW DESIGN COMPARISON


Weight	0,278 Kg	0,271 Kg	-3%
Compliance	0,034 mm	0,016 mm	- 47%



FEM RESULTS ACCURACY

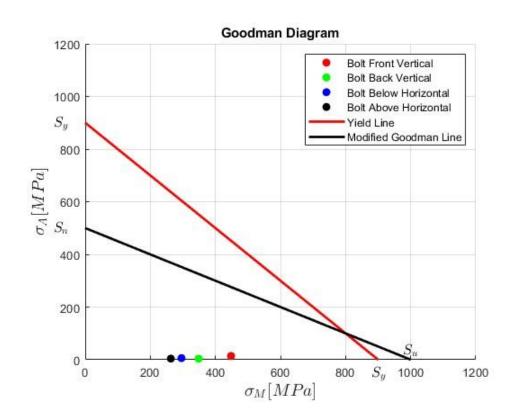
Mesh skewness leads to stress singularities in some areas.

This problem must have to be taken into account in the post-processing phase.

FATIGUE ANALYSIS - BOLT

Fork_Handlebar Bolt					
Load introduction factor		Altern	Alternate stresses		
Φk	0,42		Фп	0,03	
Joint type	SV 6		d	6	mm
h	20	mm			
a _k	5	mm			
l _A	5	mm			
l _A ∕h	0,25				
a _k /h	0,25		σ_{asv}	59,5	MPa
n	0,06				

Bar_Handlebar Bolt	σ_{a}	
Front Bolt	0,12	Мра
Rear Bolt	0,07	Мра
	σamax < σasv	


Fatigue calculations for Fork_Handlebar connection.

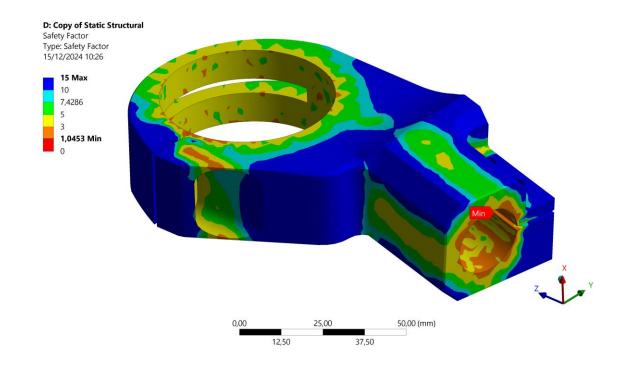
Fatigue analysis was done on each bolt following VDI 2230.

Since $\sigma_{asv} >> \sigma_a$ the bolt meets the requirements.

FATIGUE ANALYSIS - BOLT GOODMAN DIAGRAM

Extracting Equivalent Sigma from FEM results, on thread bolt surfaces, Goodman diagram was applied.

Results were plotted using Matlab script.


Validation Fatigue - Goodman Diagram					
	σ_	$\sigma_{\scriptscriptstyle{+}}$	$\sigma_{\mathtt{A}}$	σ_{M}	
Front Vertical Bolt	434,05	462,3	14,125	448,175	MPa
Back Vertical Bolt	352,15	344,73	3,71	348,44	MPa
Lower Horizontal Bolt	289,8	301,44	5,82	295,62	MPa
Upper Horizontal Bolt	267,26	259,03	4,115	263,145	MPa

FATIGUE ANALYSIS – HANDLEBAR BRACKET SN DIAGRAM

SN DIAGRAM

CONSIDERATIONS AND IMPROVEMENTS

Data from FEM analysis were carefully reviewed to understand singularities and mesh errors.

A more resistant material, could be an excellent improvement for saving more weight.

CNC manufacturing is a significant manufacturing constraint, that limits the Topological Optimization capabilities.

From another perspective, CNC manufacturing is a more proven and well-tested production method.

THANKS FOR YOUR ATTENTION